Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Shock ; 56(5): 667-672, 2021 11 01.
Article in English | MEDLINE | ID: covidwho-1470219

ABSTRACT

BACKGROUND: "Cytokine storm" has been used to implicate increased cytokine levels in the pathogenesis of serious clinical conditions. Similarities with Severe Acute Respiratory Syndrome Coronoavirus-2 (SARS CoV-2) and the 2012 Middle Eastern Respiratory Syndrome led early investigators to suspect a "cytokine storm" resulting in an unregulated inflammatory response associated with the significant morbidity and mortality induced by SARS CoV-2. The threshold of blood cytokines necessary to qualify as a "cytokine storm" has yet to be defined. METHODS: A literature review was conducted to identify cytokine levels released during 11 assorted clinical conditions or diseases. Weighted averages for various cytokines were calculated by multiplying the number of patients in the paper by the average concentration of each cytokine. Correlation between cytokine levels for individual conditions or diseases were assessed using Pearson correlation coefficient. RESULTS: The literature was reviewed to determine blood levels of cytokines in a wide variety of clinical conditions. These conditions ranged from exercise and autoimmune disease to septic shock and therapy with chimeric antigen receptor T cells. The most frequently measured cytokine was IL-6 which ranged from 24,123 pg/mL in septic shock to 11 pg/mL after exercise. In patients with severe SARS CoV-2 infections, blood levels of IL-6 were only 43 pg/mL, nearly three magnitudes lower than IL-6 levels in patients with septic shock. The clinical presentations of these different diseases do not correlate with blood levels of cytokines. Additionally, there is poor correlation between the concentrations of different cytokines among the different diseases. Specifically, blood levels of IL-6 did not correlate with levels of IL-8, IL-10, or TNF. Septic shock had the highest concentrations of cytokines, yet multiple cytokine inhibitors have failed to demonstrate improved outcomes in multiple clinical trials. Patients with autoimmune diseases have very low blood levels of cytokines (rheumatoid arthritis, IL-6 = 34 pg/mL; Crohn's disease, IL-6 = 5 pg/mL), yet respond dramatically to cytokine inhibitors. CONCLUSION: The misleading term "cytokine storm" implies increased blood levels of cytokines are responsible for a grave clinical condition. Not all inflammatory conditions resulting in worsened disease states are correlated with significantly elevated cytokine levels, despite an association with the term "cytokine storm". "Cytokine storm" should be removed from the medical lexicon since it does not reflect the mediators driving the disease nor does it predict which diseases will respond to cytokine inhibitors.


Subject(s)
COVID-19/immunology , Coronavirus Infections/immunology , Cytokine Release Syndrome , Cytokines/blood , COVID-19/blood , Coronavirus Infections/blood , Humans , Inflammation , Interleukin-6/blood , Receptors, Chimeric Antigen/immunology , SARS-CoV-2 , Shock, Septic/blood , Shock, Septic/immunology , T-Lymphocytes/immunology
2.
Int J Mol Sci ; 22(4)2021 Feb 23.
Article in English | MEDLINE | ID: covidwho-1389391

ABSTRACT

Endotoxin removal therapy with polymyxin B immobilized fiber column (PMX) has been clinically applied for sepsis and septic shock patients since 1994. The effectiveness and usefulness of this therapy have been demonstrated for more than a quarter of a century. However, a documented survival benefit has not yet been demonstrable in a large, multicenter, randomized and controlled trial. Following the findings derived from a large sepsis clinical trial with PMX in North America, a new trial is ongoing to determine if PMX has a long-term survival benefit when administered to septic patients. Another approach to support a survival benefit from intervention with PMX is to utilize a detailed analysis available from a large clinical data base. The endotoxin adsorption capacity of PMX columns in vitro and the effectiveness of PMX columns can be further demonstrable in animal models. The capability of PMX and details of its mechanism of action to intervene in the sepsis cascade and impede organ dysfunction in septic patients is not fully understood. The surface antigen expression in monocytes and neutrophils are improved after PMX therapy. Immunomodulatory effects as a result of endotoxin removal and/or other mechanisms of action have been suggested. These effects and other potential immune effects may explain some of the improved effects upon organ dysfunction of sepsis and septic shock patients. Endotoxemia may be involved in the pathophysiology of other diseases than sepsis. A rapid diagnostic method to detect and target endotoxemia could allow us to practice precision medicine and expand the clinical indications of endotoxin removal therapy.


Subject(s)
Cotton Fiber , Endotoxins/blood , Endotoxins/isolation & purification , Hemoperfusion/methods , Immobilization/methods , Polymyxin B/chemistry , Sepsis/therapy , Shock, Septic/therapy , Adsorption , Animals , COVID-19/therapy , Endotoxemia/blood , Endotoxemia/therapy , Humans , Idiopathic Pulmonary Fibrosis/drug therapy , Idiopathic Pulmonary Fibrosis/therapy , Immobilization/instrumentation , Sepsis/blood , Shock, Septic/blood
4.
Shock ; 55(6): 752-758, 2021 06 01.
Article in English | MEDLINE | ID: covidwho-835230

ABSTRACT

ABSTRACT: Critically ill patients with COVID-19 infection frequently exhibit a hyperinflammatory response and develop organ failures; however, the underlying mechanisms are unclear. We investigated the microcirculatory, endothelial, and inflammatory responses in critically ill COVID-19 patients and compared them to a group of patients with septic shock in a prospective observational case control study. Thirty critically ill patients with COVID-19 were compared to 33 patients with septic shock.Measurements of sublingual microcirculatory flow using Incident Dark Field video-microscopy and serial measurements of IL-6 and Syndecan-1 levels were performed. COVID-19 patients had significantly less vasoactive drug requirement and lower plasma lactate than those with septic shock. Microcirculatory flow was significantly worse in septic patients than those with COVID-19 (MFI 2.6 vs 2.9 p 0.02, PPV 88 vs 97% P < 0.001). IL-6 was higher in patients with septic shock than COVID-19 (1653 vs 253 pg/mL, P 0.03). IL-6 levels in COVID 19 patients were not elevated compared to healthy controls except on the day of ICU admission. Syndecan-1 levels were not different between the two pathological groups. Compared to patients with undifferentiated septic shock an overt shock state with tissue hypoperfusion does not appear typical of COVID-19 infection. There was no evidence of significant sublingual microcirculatory impairment, widespread endothelial injury or marked inflammatory cytokine release in this group of critically ill COVID-19 patients.


Subject(s)
COVID-19/blood , Endothelium, Vascular/metabolism , Interleukin-6/blood , Microcirculation , SARS-CoV-2/metabolism , Shock, Septic/blood , Syndecan-1/blood , Aged , COVID-19/pathology , Critical Illness , Endothelium, Vascular/pathology , Female , Humans , Inflammation/blood , Inflammation/pathology , Male , Middle Aged , Prospective Studies , Shock, Septic/pathology
5.
Blood Purif ; 50(2): 141-149, 2021.
Article in English | MEDLINE | ID: covidwho-423313

ABSTRACT

The real issue with the COVID-19 pandemic is that a rapidly increasing number of patients with life-threatening complications are admitted in hospitals and are not well-administered. Although a limited number of patients use the intensive care unit (ICU), they consume medical resources, safety equipment, and enormous equipment with little possibility of rapid recovery and ICU discharge. This work reviews effective methods of using filtration devices in treatment to reduce the level of various inflammatory mediators and discharge patients from the ICU faster. Extracorporeal technologies have been reviewed as a medical approach to absorb cytokines. Although these devices do not kill or remove the virus, they are a promising solution for treating patients and their faster removal from the ICU, thus relieving the bottleneck.


Subject(s)
COVID-19/complications , Cytokine Release Syndrome/therapy , Cytokines/blood , Hemofiltration/methods , SARS-CoV-2 , Shock, Septic/therapy , Sorption Detoxification/methods , Acute Kidney Injury/etiology , Acute Kidney Injury/therapy , Anti-Bacterial Agents/therapeutic use , COVID-19/blood , Coated Materials, Biocompatible , Combined Modality Therapy , Continuous Renal Replacement Therapy , Cross-Over Studies , Cytokine Release Syndrome/blood , Cytokine Release Syndrome/etiology , Double-Blind Method , Equipment Design , Hemofiltration/instrumentation , Humans , Membranes, Artificial , Microspheres , Multiple Organ Failure/etiology , Multiple Organ Failure/therapy , Plasmapheresis/methods , Randomized Controlled Trials as Topic , Respiration, Artificial , Respiratory Distress Syndrome/etiology , Respiratory Distress Syndrome/therapy , Shock, Septic/blood , Shock, Septic/etiology , Sorption Detoxification/instrumentation
SELECTION OF CITATIONS
SEARCH DETAIL